MVR COLLEGE OF ENGINEERING AND TECHNOLOGY

COMPUTER PROGRAMMING

UNIT III

C – Functions
A function is a group of statements that together perform a task. Every C program has at least one function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among different functions is up to you, but logically the division usually is so each function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters. A function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can call. For example, function strcat() to concatenate two strings, function memcpy() to copy one memory location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure, etc.

Defining a Function:
The general form of a function definition in C programming language is as follows:

return_type function_name( parameter list )

{

   body of the function

}
A function definition in C programming language consists of a function header and a function body. Here are all the parts of a function:

Return Type: A function may return a value. The return_type is the data type of the value the function returns. Some functions perform the desired operations without returning a value. In this case, the return_type is the keyword void.

Function Name: This is the actual name of the function. The function name and the parameter list together constitute the function signature.

Parameters: A parameter is like a placeholder. When a function is invoked, you pass a value to the parameter. This value is referred to as actual parameter or argument. The parameter list refers to the type, order, and number of the parameters of a function. Parameters are optional; that is, a function may contain no parameters.

Function Body: The function body contains a collection of statements that define what the function does.

Example:

Following is the source code for a function called max(). This function takes two parameters num1 and num2 and returns the maximum between the two:

/* function returning the max between two numbers */

int max(int num1, int num2) 

{

   /* local variable declaration */

   int result;

   if (num1 > num2)

      result = num1;

   else

      result = num2;

   return result; 

}

Function Declarations:

A function declaration tells the compiler about a function name and how to call the function. The actual body of the function can be defined separately.

A function declaration has the following parts:

return_type function_name( parameter list );

For the above defined function max(), following is the function declaration:

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so following is also valid declaration:

int max(int, int);

Function declaration is required when you define a function in one source file and you call that function in another file. In such case you should declare the function at the top of the file calling the function.

Calling a Function:

While creating a C function, you give a definition of what the function has to do. To use a function, you will have to call that function to perform the defined task.

When a program calls a function, program control is transferred to the called function. A called function performs defined task and when its return statement is executed or when its function-ending closing brace is reached, it returns program control back to the main program.

To call a function, you simply need to pass the required parameters along with function name, and if function returns a value, then you can store returned value. For example:

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main ()

{

   /* local variable definition */

   int a = 100;

   int b = 200;

   int ret;

   /* calling a function to get max value */

   ret = max(a, b);

   printf( "Max value is : %d\n", ret );

   return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) 

{

   /* local variable declaration */

   int result;

   if (num1 > num2)

      result = num1;

   else

      result = num2;

   return result; 

}

I kept max() function along with main() function and compiled the source code. While running final executable, it would produce the following result:

Max value is : 200

Function Arguments:

If a function is to use arguments, it must declare variables that accept the values of the arguments. These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are created upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function:

 Call by Value or Call by Reference
In this C language tutorial we will take a look at call by value and call by reference (also known as pass-by-value and pass-by-reference). These methods are different ways of passing (or calling) data tofunctions.

Call by Value

If data is passed by value, the data is copied from the variable used in for example main() to a variable used by the function. So if the data passed (that is stored in the function variable) is modified inside the function, the value is only changed in the variable used inside the function. Let’s take a look at a call by value example:
#include <stdio.h>

void call_by_value(int x) {


printf("Inside call_by_value x = %d before adding 10.\n", x);


x += 10;


printf("Inside call_by_value x = %d after adding 10.\n", x);

}

int main() {


int a=10;


printf("a = %d before function call_by_value.\n", a);


call_by_value(a);


printf("a = %d after function call_by_value.\n", a);


return 0;

}

The output of this call by value code example will look like this:
a = 10 before function call_by_value.

Inside call_by_value x = 10 before adding 10.

Inside call_by_value x = 20 after adding 10.

a = 10 after function call_by_value.

Ok, let’s take a look at what is happening in this call-by-value source code example. In the main() we create a integer that has the value of 10. We print some information at every stage, beginning by printing our variable a. Then function call_by_value is called and we input the variable a. This variable (a) is then copied to the function variable x. In the function we add 10 to x (and also call some print statements). Then when the next statement is called in main() the value of variable a is printed. We can see that the value of variable a isn’t changed by the call of the function call_by_value().

Call by Reference

If data is passed by reference, a pointer to the data is copied instead of the actual variable as is done in a call by value. Because a pointer is copied, if the value at that pointers address is changed in the function, the value is also changed in main(). Let’s take a look at a code example:
#include <stdio.h>

void call_by_reference(int *y) {


printf("Inside call_by_reference y = %d before adding 10.\n", *y);


(*y) += 10;


printf("Inside call_by_reference y = %d after adding 10.\n", *y);

}

int main() {


int b=10;


printf("b = %d before function call_by_reference.\n", b);


call_by_reference(&b);


printf("b = %d after function call_by_reference.\n", b);


return 0;

}

The output of this call by reference source code example will look like this:

b = 10 before function call_by_reference.

Inside call_by_reference y = 10 before adding 10.

Inside call_by_reference y = 20 after adding 10.

b = 20 after function call_by_reference.

Let’s explain what is happening in this source code example. We start with an integer b that has the value 10. The function call_by_reference() is called and the address of the variable b is passed to this function. Inside the function there is some before and after print statement done and there is 10 added to the value at the memory pointed by y. Therefore at the end of the function the value is 20. Then in main() we again print the variable b and as you can see the value is changed (as expected) to 20.

When to Use Call by Value and When to use Call by Reference?

One advantage of the call by reference method is that it is using pointers, so there is no doubling of the memory used by the variables (as with the copy of the call by value method). This is of course great, lowering the memory footprint is always a good thing. So why don’t we just make all the parameters call by reference?

There are two reasons why this is not a good idea and that you (the programmer) need to choose between call by value and call by reference. The reason are: side effects and privacy. Unwanted side effects are usually caused by inadvertently changes that are made to a call by reference parameter. Also in most cases you want the data to be private and that someone calling a function only be able to change if you want it. So it is better to use a call by value by default and only use call by reference if data changes are expected.

 Storage Classes

A storage class defines the scope (visibility) and life time of variables and/or functions within a C Program.

There are following storage classes which can be used in a C Program

· auto

· register

· static

· extern

auto - Storage Class

auto is the default storage class for all local variables.


{

            int Count;

            auto int Month;


}

The example above defines two variables with the same storage class. auto can only be used within functions, i.e. local variables.

register - Storage Class

register is used to define local variables that should be stored in a register instead of RAM. This means that the variable has a maximum size equal to the register size (usually one word) and cant have the unary '&' operator applied to it (as it does not have a memory location).


{

            register int  Miles;


}

Register should only be used for variables that require quick access - such as counters. It should also be noted that defining 'register' goes not mean that the variable will be stored in a register. It means that it MIGHT be stored in a register - depending on hardware and implimentation restrictions.

static - Storage Class

static is the default storage class for global variables. The two variables below (count and road) both have a static storage class.


static int Count;

        int Road;

        {

            printf("%d\n", Road);

        }

static variables can be 'seen' within all functions in this source file. At link time, the static variables defined here will not be seen by the object modules that are brought in.

static can also be defined within a function. If this is done the variable is initalised at run time but is not reinitalized when the function is called. This inside a function static variable retains its value during vairous calls.

   void func(void);

   static count=10; /* Global variable - static is the default */

   main()

   {

     while (count--) 

     {

         func();

     }

   }

   void func( void )

   {

     static i = 5;

     i++;

     printf("i is %d and count is %d\n", i, count);

   }

   This will produce following result

   i is 6 and count is 9

   i is 7 and count is 8

   i is 8 and count is 7

   i is 9 and count is 6

   i is 10 and count is 5

   i is 11 and count is 4

   i is 12 and count is 3

   i is 13 and count is 2

   i is 14 and count is 1

   i is 15 and count is 0

NOTE : Here keyword void means function does not return anything and it does not take any parameter. You can memoriese void as nothing. static variables are initialized to 0 automatically.

Definition vs Declaration : Before proceeding, let us understand the difference between defintion and declaration of a variable or function. Definition means where a variable or function is defined in realityand actual memory is allocated for variable or function. Declaration means just giving a reference of a variable and function. Through declaration we assure to the complier that this variable or function has been defined somewhere else in the program and will be provided at the time of linking. In the above examples char *func(void) has been put at the top which is a declaration of this function where as this function has been defined below to main() function.

There is one more very important use for 'static'. Consider this bit of code.

   char *func(void);

   main()

   {

      char *Text1;

      Text1 = func();

   }

   char *func(void)

   {

      char Text2[10]="martin";

      return(Text2);

   }

Now, 'func' returns a pointer to the memory location where 'text2' starts BUT text2 has a storage class of 'auto' and will disappear when we exit the function and could be overwritten but something else. The answer is to specify

    static char Text[10]="martin";

The storage assigned to 'text2' will remain reserved for the duration if the program.

extern - Storage Class

extern is used to give a reference of a global variable that is visible to ALL the program files. When you use 'extern' the variable cannot be initalized as all it does is point the variable name at a storage location that has been previously defined.

When you have multiple files and you define a global variable or function which will be used in other files also, then extern will be used in another file to give reference of defined variable or function. Just for understanding extern is used to decalre a global variable or function in another files.

File 1: main.c

   int count=5;

   main()

   {

     write_extern();

   }

File 2: write.c

   void write_extern(void);

   extern int count;

   void write_extern(void)

   {

     printf("count is %i\n", count);

   }

Here extern keyword is being used to declare count in another file.

Now compile these two files as follows

   gcc main.c write.c -o write

This fill produce write program which can be executed to produce result.

Count in 'main.c' will have a value of 5. If main.c changes the value of count - write.c will see the new value 

scope
A scope in any programming is a region of the program where a defined variable can have its existence and beyond that variable can not be accessed. There are three places where variables can be declared in C programming language:

1. Inside a function or a block which is called local variables,

2. Outside of all functions which is called global variables.

3. In the definition of function parameters which is called formal parameters.

Types of User-defined Functions in C Programming 

user-defined functions can be categorised as:

· Function with no arguments and no return value

· Function with no arguments and return value

· Function with arguments but no return value

· Function with arguments and return value.

Let's take an example to find whether a number is prime or not using above 4 categories of user defined functions.

Function with no arguments and no return value.

/*C program to check whether a number entered by user is prime or not using function with no arguments and no return value*/

#include <stdio.h>

void prime();

int main(){

    prime();      //No argument is passed to prime().

    return 0;

}

void prime(){  

/* There is no return value to calling function main(). Hence, return type of prime() is void */

    int num,i,flag=0;

    printf("Enter positive integer enter to check:\n");

    scanf("%d",&num);

    for(i=2;i<=num/2;++i){

        if(num%i==0){

             flag=1;

         }

    }

    if (flag==1)

        printf("%d is not prime",num);

    else

       printf("%d is prime",num);  

    }

Function prime() is used for asking user a input, check for whether it is prime of not and display it accordingly. No argument is passed and returned form prime() function.

Function with no arguments but return value

/*C program to check whether a number entered by user is prime or not using function with no arguments but having return value */

#include <stdio.h>

int input();

int main(){

    int num,i,flag = 0;

    num=input();     /* No argument is passed to input() */

    for(i=2; i<=num/2; ++i){

    if(num%i==0){

        flag = 1;

        break;

    }

    }

    if(flag == 1)

        printf("%d is not prime",num);

    else

        printf("%d is prime", num);

    return 0;

}

int input(){   /* Integer value is returned from input() to calling function */

    int n;

    printf("Enter positive integer to check:\n");

    scanf("%d",&n);

    return n;

}

There is no argument passed to input() function But, the value of n is returned from input() to main() function.

Function with arguments and no return value

/*Program to check whether a number entered by user is prime or not using function with arguments and no return value */

#include <stdio.h>

void check_display(int n);

int main(){

    int num;

    printf("Enter positive enter to check:\n");

    scanf("%d",&num);

    check_display(num);  /* Argument num is passed to function. */

    return 0;

}

void check_display(int n){     

/* There is no return value to calling function. Hence, return type of function is void. */

    int i, flag = 0;

for(i=2; i<=n/2; ++i){

    if(n%i==0){

        flag = 1;

        break;

    }

    }

    if(flag == 1)

        printf("%d is not prime",n);

    else

        printf("%d is prime", n);

}

Here, check_display() function is used for check whether it is prime or not and display it accordingly. Here, argument is passed to user-defined function but, value is not returned from it to calling function.

Function with argument and a return value

/* Program to check whether a number entered by user is prime or not using function with argument and return value */

#include <stdio.h>

int check(int n);

int main(){

    int num,num_check=0;

    printf("Enter positive enter to check:\n");

    scanf("%d",&num);

    num_check=check(num); /* Argument num is passed to check() function. */

    if(num_check==1)

       printf("%d is not prime",num);

    else

       printf("%d is prime",num);

    return 0;

}

int check(int n){   

/* Integer value is returned from function check() */ 

    int i;

    for(i=2;i<=n/2;++i){

    if(n%i==0)

        return 1;

}

   return 0;

}

Here, check() function is used for checking whether a number is prime or not. In this program, input from user is passed to function check() and integer value is returned from it. If input the number is prime, 0 is returned and if number is not prime, 1 is returned. 

Standard Library Function

C Standard library functions or simply C Library functions are inbuilt functions in C programming. Function prototype and data definitions of these functions are written in their respective header file. For example: If you want to use printf() function, the header file <stdio.h> should be included.

#include <stdio.h>

int main()

    {

/* If you write printf() statement without including  header file, this program will show error. */

        printf("Catch me if you can."); 

    }

There is at least one function in any C program, i.e., the main() function (which is also a library function). This program is called at program starts.

There are many library functions available in C programming to help the programmer to write a good efficient program.

Suppose, you want to find the square root of a number. You can write your own piece of code to find square root but, this process is time consuming and the code you have written may not be the most efficient process to find square root. But, in C programming you can find the square root by just using sqrt() function which is defined under header file "math.h"

Use Of Library Function To Find Square root

#include <stdio.h>

#include <math.h>

int main(){

   float num,root;

   printf("Enter a number to find square root.");

   scanf("%f",&num);

   root=sqrt(num);          /* Computes the square root of num and stores in root. */

   printf("Square root of %.2f=%.2f",num,root);

   return 0;

}

List of Standard Library Functions Under Different Header Files in C Programming

C Header Files

<ctype.h>

<math.h>

<stdio.h>

<stdlib.h>

<string.h>

<time.h>
Fibonacci Series

· In the 12th century, Leonardo Fibonacci discovered a simple numerical series Called Fibonacci Series.

· Starting with 0 and 1, each new number in the series is simply the sum of the two before it.





C code to print Fibonacci series with recursion
#include<stdio.h>
void printFibonacci(int);
int main(){
    int k,n;
    long int i=0,j=1,f;
   printf("Enter the range of the Fibonacci series: ");
    scanf("%d",&n);
    printf("Fibonacci Series: ");
    printf("%d %d ",0,1);
    printFibonacci(n);
    return 0;
}
void printFibonacci(int n){
    static long int first=0,second=1,sum;
    if(n>0){
         sum = first + second;
         first = second;
         second = sum;
         printf("%ld ",sum);
         printFibonacci(n-1);
    }
}
Sample output:
Enter the range of the Fibonacci series: 10
Fibonacci Series: 0 1 1 2 3 5 8 13 21 34 55 89
C code to print Fibonacci series without recursion
#include<stdio.h>
void printFibonacci(int);
int main(){
    int k,n;
    long int i=0,j=1,f;
    printf("Enter the range of the Fibonacci series: ");
    scanf("%d %d ",&n);
    printf("Fibonacci Series: ");
    printf("%d ",0);
    printFibonacci(n);
    return 0;
}
void printFibonacci(int n){
    long int first=0,second=1,sum;
    while(n>0){
         sum = first + second;
         first = second;
         second = sum;
         printf("%ld ",sum);
         n--;
    }
}
C Program to print Tower of Hanoi using recursion

 [image: image1.png]ower of Hanoi — 3 Discs




The objective of the puzzle is to move the entire stack to another rod, obeying the following simple rules:

1. Only one disk can be moved at a time.

2. Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack i.e. a disk can only be moved if it is the uppermost disk on a stack.

3. No disk may be placed on top of a smaller disk.

With three disks, the puzzle can be solved in seven moves. The minimum number of moves required to solve a Tower of Hanoi puzzle is 2n - 1, where n is the number of disks.

#include<stdio.h>
 

void TOH(int num, char x, char y, char z);
 

int main() {
   int num;
   printf("\nEnter number of plates:");
   scanf("%d", &num);
 

   TOH(num - 1, 'A', 'B', 'C');
   return (0);
}
 

void TOH(int num, char x, char y, char z) {
   if (num > 0) {
      TOH(num - 1, x, z, y);
      printf("\n%c -> %c", x, y);
      TOH(num - 1, z, y, x);
   }
}
The C Preprocessor is not part of the compiler, but is a separate step in the compilation process. In simplistic terms, a C Preprocessor is just a text substitution tool and they instruct compiler to do required pre-processing before actual compilation. We'll refer to the C Preprocessor as the CPP.

All preprocessor commands begin with a pound symbol (#). It must be the first nonblank character, and for readability, a preprocessor directive should begin in first column. Following section lists down all important preprocessor directives:

	Directive
	Description

	#define
	Substitutes a preprocessor macro

	#include
	Inserts a particular header from another file

	#undef
	Undefines a preprocessor macro

	#ifdef
	Returns true if this macro is defined

	#ifndef
	Returns true if this macro is not defined

	#if
	Tests if a compile time condition is true

	#else
	The alternative for #if

	#elif
	#else an #if in one statement

	#endif
	Ends preprocessor conditional

	#error
	Prints error message on stderr

	#pragma
	Issues special commands to the compiler, using a standardized method


Preprocessors Examples

Analyze the following examples to understand various directives.

#define MAX_ARRAY_LENGTH 20
This directive tells the CPP to replace instances of MAX_ARRAY_LENGTH with 20. Use #define for constants to increase readability.

#include <stdio.h>
#include "myheader.h"
These directives tell the CPP to get stdio.h from System Libraries and add the text to the current source file. The next line tells CPP to get myheader.h from the local directory and add the content to the current source file.

#undef  FILE_SIZE

#define FILE_SIZE 42
This tells the CPP to undefine existing FILE_SIZE and define it as 42.

#ifndef MESSAGE

   #define MESSAGE "You wish!"
#endif
This tells the CPP to define MESSAGE only if MESSAGE isn't already defined.

#ifdef DEBUG

   /* Your debugging statements here */
#endif
This tells the CPP to do the process the statements enclosed if DEBUG is defined. This is useful if you pass the -DDEBUG flag to gcc compiler at the time of compilation. This will define DEBUG, so you can turn debugging on and off on the fly during compilation.

Predefined Macros

ANSI C defines a number of macros. Although each one is available for your use in programming, the predefined macros should not be directly modified.

	Macro
	Description

	__DATE__
	The current date as a character literal in "MMM DD YYYY" format

	__TIME__
	The current time as a character literal in "HH:MM:SS" format

	__FILE__
	This contains the current filename as a string literal.

	__LINE__
	This contains the current line number as a decimal constant.

	__STDC__
	Defined as 1 when the compiler complies with the ANSI standard.


Let's try the following example:

#include <stdio.h>
main()
{
   printf("File :%s\n", __FILE__ );
   printf("Date :%s\n", __DATE__ );
   printf("Time :%s\n", __TIME__ );
   printf("Line :%d\n", __LINE__ );
   printf("ANSI :%d\n", __STDC__ );
}
When the above code in a file test.c is compiled and executed, it produces the following result:

File :test.c

Date :Jun 2 2012

Time :03:36:24

Line :8

ANSI :1

95

